An Inverse–Problem Approach to Designing Photonic Crystals for Cavity QED
نویسندگان
چکیده
Photonic band gap (PBG) materials are attractive for cavity QED experiments because they provide extremely small mode volumes and are monolithic, integratable structures. As such, PBG cavities are a promising alternative to Fabry-Perot resonators. However, the cavity requirements imposed by QED experiments, such as the need for high Q (low cavity damping) and small mode volumes, present significant design challenges for photonic band gap materials. Here, we pose the PBG design problem as a mathematical inversion and provide an analytical solution for a twodimensional crystal. We then address a planar (2D crystal with finite thickness) structure using numerical techniques.
منابع مشابه
Inverse-problem approach to designing photonic crystals for cavity QED experiments.
Photonic band gap (PBG) materials are attractive for cavity QED experiments because they provide extremely small mode volumes and are monolithic, integratable structures. As such, PBG cavities are a promising alternative to Fabry-Perot resonators. However, the cavity requirements imposed by QED experiments, such as the need for high Q (low cavity damping) and small mode volumes, present signifi...
متن کاملThe effect of cells' radius on optical filter output spectrum based on photonic crystals
In this article, the effect of cells' radius on the behavior of wavelength switching optical filter andthe effect of the radius of the optical filters' key characteristics such as wavelength resonance onan optical filter based on photonic crystals, have been investigated. Currently, the most commonapplied mechanism for designing optical filter based on photonic crystals is using twomechanisms s...
متن کاملA Systematic Approach to Photonic Crystal Based Metamaterial Design
Photonic crystal design procedure for negative refraction has so far been based on trial and error. In this paper, for the first time, a novel and systematic design procedure based on physical and mathematical properties of photonic crystals is proposed to design crystal equi-frequency contours (EFCs) to produce negative refraction. The EFC design is performed by the help of rectangular stair-c...
متن کاملAtom induced cavities and tunable long-range interactions between atoms trapped near photonic crystals
Achieving tunable and coherent long-range interactions between cold atoms is an outstanding challenge. We propose a solution based on the powerful new platform of cold atoms trapped near nano-photonic systems. We show that atoms trapped near photonic crystals act as dielectric elements that seed localized cavity modes around the atomic position. This enables a dynamic form of “all-atomic” cavit...
متن کاملQuantum dot - photonic crystal cavity
The focus of our effort has been to develop quantum information processing technologies based on a solid-state cavity QED platform consisting of quantum dots in photonic crystals. The main goals that we have accomplished include: 1. Study of the ultrafast dynamics of the quantum dot-cavity QED system [Majumdar et al., Phys. Rev. A, 2012], and ultrafast switching between two single photon pulses...
متن کامل